# Semantic Segmentation

Upernet Swin Large
MIT
UPerNet semantic segmentation model based on Swin Transformer architecture, suitable for high-precision image segmentation tasks
Image Segmentation
U
smp-hub
110
0
Upernet Swin Small
MIT
UPerNet semantic segmentation model based on Swin Transformer small architecture, suitable for scene parsing tasks like ADE20K
Image Segmentation
U
smp-hub
100
0
Upernet Swin Tiny
MIT
UPerNet is a semantic segmentation model based on the ConvNeXt-Tiny architecture, suitable for image segmentation tasks.
Image Segmentation Safetensors
U
smp-hub
191
0
Upernet Convnext Large
MIT
UPerNet semantic segmentation model based on ConvNeXt-Large encoder, suitable for scene parsing tasks like ADE20K
Image Segmentation Safetensors
U
smp-hub
54
0
Upernet Convnext Base
MIT
UPerNet image segmentation model based on ConvNeXt architecture, suitable for semantic segmentation tasks
Image Segmentation Safetensors
U
smp-hub
57
0
Upernet Convnext Small
MIT
UPerNet is a semantic segmentation model based on the ConvNeXt-Small architecture, suitable for image segmentation tasks.
Image Segmentation Safetensors
U
smp-hub
70
0
Upernet Convnext Tiny
MIT
UPerNet image segmentation model based on ConvNeXt-Tiny encoder, suitable for semantic segmentation tasks
Image Segmentation
U
smp-hub
149
0
Dpt Tu Test Vit
MIT
A PyTorch-based image segmentation model library supporting various encoder-decoder architectures for semantic segmentation tasks
Image Segmentation Safetensors
D
smp-test-models
228
0
Route Background Semantic X2
This model is a fine-tuned image segmentation model based on Logiroad/route_background_semantic_x2 on the Logiroad/route_background_semantic dataset, primarily used for road background semantic segmentation tasks.
Image Segmentation Transformers
R
Logiroad
78
0
DPT
MIT
A PyTorch-based image segmentation model using Transformer architecture for dense prediction tasks
Image Segmentation
D
vedantdalimkar
92
0
Upernet Tu Resnet18
MIT
UPerNet is an image segmentation model implemented in PyTorch, supporting semantic segmentation tasks.
Image Segmentation Safetensors
U
smp-test-models
267
0
Pan Tu Resnet18
MIT
PAN is an image segmentation model implemented in PyTorch, utilizing pyramid attention mechanisms to enhance feature extraction capabilities
Image Segmentation
P
smp-test-models
211
0
Deeplabv3 Tu Resnet18
MIT
DeepLabV3 is a semantic segmentation model implemented in PyTorch, suitable for image segmentation tasks.
Image Segmentation
D
smp-test-models
210
0
Pspnet Tu Resnet18
MIT
PSPNet is a deep learning model for semantic segmentation that uses pyramid pooling modules to capture multi-scale contextual information
Image Segmentation
P
smp-test-models
213
0
Linknet Tu Resnet18
MIT
Linknet is a PyTorch-implemented image segmentation model suitable for semantic segmentation tasks.
Image Segmentation
L
smp-test-models
214
0
Manet Tu Resnet18
MIT
A PyTorch-based semantic segmentation model utilizing multi-scale attention mechanisms, suitable for image segmentation tasks
Image Segmentation
M
smp-test-models
216
0
Unetplusplus Tu Resnet18
MIT
A semantic segmentation model based on PyTorch, utilizing an improved UNet++ architecture, suitable for image segmentation tasks.
Image Segmentation
U
smp-test-models
215
0
Unet Tu Resnet18
MIT
Unet image segmentation model implemented in PyTorch, supporting multiple encoder architectures
Image Segmentation
U
smp-test-models
219
0
Segformer B3 1024x1024 City 160k
Other
A semantic segmentation model based on the Segformer architecture, optimized for the Cityscapes dataset
Image Segmentation
S
smp-hub
14
0
Segformer B0 1024x1024 City 160k
Other
A lightweight semantic segmentation model based on Segformer architecture, pre-trained on the Cityscapes dataset
Image Segmentation Safetensors
S
smp-hub
269
1
Segformer B2 1024x1024 City 160k
Other
A semantic segmentation model based on the Segformer architecture, specifically optimized for the Cityscapes dataset
Image Segmentation
S
smp-hub
651
0
Segformer B1 512x512 Ade 160k
Other
PyTorch-based Segformer model for semantic segmentation tasks, pre-trained on the ADE20K dataset
Image Segmentation
S
smp-hub
20
0
Segformer B5 640x640 Ade 160k
Other
PyTorch-based Segformer image segmentation model, suitable for semantic segmentation tasks on the ADE20K dataset
Image Segmentation Safetensors
S
smp-hub
274
0
Water Meter Segmentation
MIT
PyTorch-based Unet image segmentation model supporting multiple encoder architectures
Image Segmentation
W
nitidpong
16
1
Aerial Drone Image Segmentation
Other
A fine-tuned aerial drone image segmentation model based on nvidia/mit-b0, suitable for multi-class segmentation tasks in aerial images.
Image Segmentation Transformers
A
Thalirajesh
76
11
Segformer B0 Finetuned Segments Skin Hair Clothing
MIT
Image segmentation dataset for human parsing tasks
Image Segmentation Transformers
S
isjackwild
132
2
Roadsense High Definition Street Segmentation
Other
A lightweight image segmentation model based on SegFormer architecture, specifically fine-tuned for sidewalk scenarios
Image Segmentation Transformers
R
iammartian0
63
1
Mobilevitv2 1.0 Voc Deeplabv3
Other
A semantic segmentation model based on MobileViTv2 architecture with DeepLabV3 head, pretrained on PASCAL VOC dataset at 512x512 resolution
Image Segmentation Transformers
M
apple
29
1
Mobilevitv2 1.0 Voc Deeplabv3
Other
A semantic segmentation model based on the MobileViTv2 architecture, pre-trained on the PASCAL VOC dataset, supporting 512x512 resolution image processing
Image Segmentation Transformers
M
shehan97
1,075
0
Segformer B0 Person Segmentation
Openrail
A semantic segmentation model based on the Segformer architecture, used to assign semantic category labels to each pixel in an image.
Image Segmentation Transformers English
S
s3nh
3,187
2
Upernet Swin Base
MIT
UperNet is a framework for semantic segmentation that uses Swin Transformer as the backbone network, enabling efficient pixel-level semantic annotation.
Image Segmentation Transformers English
U
openmmlab
700
2
Upernet Swin Small
MIT
UperNet is a framework for semantic segmentation, utilizing Swin Transformer as the backbone network to achieve pixel-level semantic label prediction.
Image Segmentation Transformers English
U
openmmlab
1,467
5
Upernet Swin Tiny
MIT
UperNet is a semantic segmentation framework that uses Swin Transformer as the backbone network, enabling pixel-level semantic label prediction.
Image Segmentation Transformers English
U
openmmlab
4,682
3
Upernet Convnext Xlarge
MIT
UperNet is a framework for semantic segmentation, utilizing ConvNeXt as the backbone network, capable of predicting semantic labels for each pixel.
Image Segmentation Transformers English
U
openmmlab
659
2
Upernet Convnext Large
MIT
UperNet is a semantic segmentation framework combined with the ConvNeXt large backbone network for pixel-level semantic label prediction.
Image Segmentation Transformers English
U
openmmlab
23.09k
0
Upernet Convnext Base
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as the backbone network and can predict semantic labels for each pixel.
Image Segmentation Transformers English
U
openmmlab
178
1
Upernet Convnext Small
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as its backbone network, enabling pixel-level semantic label prediction.
Image Segmentation Transformers English
U
openmmlab
43.31k
31
Upernet Convnext Tiny
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as the backbone network, capable of predicting a semantic label for each pixel.
Image Segmentation Transformers English
U
openmmlab
3,866
3
Inlegalbert
MIT
InLegalBERT is a Transformer model pre-trained on Indian legal texts, specializing in natural language processing tasks for the legal domain.
Large Language Model Transformers English
I
law-ai
753.50k
77
Segformer B0 Finetuned Segments Water 2
Apache-2.0
An image segmentation model fine-tuned on the imadd/water_dataset dataset based on nvidia/mit-b0, designed for water segmentation tasks
Image Segmentation Transformers
S
imadd
51
1
Featured Recommended AI Models
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase